
Design Project Report
STIJN DIJKSTRA, LUC DOP, TIM MULDER, and JUSTIN
RUITER
Every day, many inspectors for Rijkswaterstaat go out
to check the health of public infrastructure like bridges.
This job is not simple and analyzing the data produced
by an inspection takes time. With this project, we will
investigate whether it is feasible to aid inspectors with
an autonomously flying drone such as the DJI mini 2.

In this report we show that autonomous flight is pos-
sible on the DJI mini 2 using Live Mission Recording.
However, we do recommend using a more expensive
drone, but still a consumer drone. These drones usually
have features like waypoint flight built in. Additionally,
we built a web dashboard to show the user existing
missions and results of our machine learning algorithm.

Authors’ address: Stijn Dijkstra, s.j.dijkstra-2@student.
utwente.nl; Luc Dop, l.t.j.dop@student.utwente.nl; Tim
Mulder, t.t.mulder@student.utwente.nl; Justin Ruiter, j.a.g.
ruiter@student.utwente.nl.

© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive
Version of Record was published in , https://doi.org/10.1145/
nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Author

Contents

Abstract 1
Contents 2
1 Introduction 4
2 Domain Analysis 4
2.1 General Information 4
2.2 Involved Parties 4
2.3 Existing Solutions 5
2.4 Limitations of Existing Solutions 5
3 Design Process 6
3.1 Preliminary Design 6
3.2 Initial Proposal 6
3.3 Incorporating Feedback 6
4 User Stories 6
4.1 Different Users 6
4.2 Inspector Stories 7
4.3 System Administrator Stories 7
4.4 Client Stories 7
5 Requirement Analysis 8
5.1 Discovery Process 8
5.2 Functional Requirements 8
5.3 Non-functional Requirements 8
6 Architectural Design 9
6.1 Overview 9
6.2 Android Application and Drone Control 9
6.3 Backend System and Database 9
6.4 Dashboard Web Application 10
6.5 Image Recognition Server 11
6.6 Flexibility 12
7 User Interface Overview 12
7.1 Features 12
7.2 Usability 13
7.3 Considerations in Further Design 14
8 Testing and Validation 14
8.1 Testing Approach 14
8.2 Integration Testing 14
8.3 Requirement Validation 14
8.4 Machine learning model analysis 15
9 Reflection 16
9.1 Planning 16
9.2 Cooperation 16
9.3 Stakeholder Interactions 16
9.4 Issues 16

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 3

10 Conclusion 17
10.1 Thoughts on DJI SDK 17
10.2 Feasibility of Consumer Drones 18
10.3 Documentation 18
10.4 Recommendations 18
11 Future Work 19
11.1 Android Device Emulation 19
11.2 Improvement of Image Classification Models 19
References 20
A Gantt chart 21
B Diagrams 22
B.1 Architecture Overview 22
B.2 Database diagram 23
B.3 Activity diagrams 24
B.4 Use case diagram 26
C Mobile application 27
D Dashboard 28
E Machine learning 30

, Vol. 1, No. 1, Article . Publication date: November 2023.

4 • Author

1 INTRODUCTION
In recent years, the drone market has seen signifi-
cant growth with more types of drones becoming
available to the public at affordable prices. While
professional drones with features such as a 4K
camera or a larger than 5 kilometer flight range
still cost over €1000, it is projected that lightweight,
hobbyist drones can be bought for under €100 [14].
These drones usually do not come with advanced
software features such as Live Mission Recording
(LMR). LMR is a way to record a set of waypoints
previously flown by the drone to autonomously
re-fly these exact waypoints in the future.

Our project involves building Live Mission
Recording functionality in an Android app to con-
trol a DJI mini 2, a starter drone that costs around
€500, having a weight of 249 grams, so anyone
may fly it, even without a drone license. For this
project, we worked together with TNO and Rijk-
swaterstaat, who are interested in the use case of
recording a mission around critical infrastructure
like bridges to automatically assess their health.
These missions can later be reflown automatically
to more easily build a library of pictures of the
bridge at different times. The images will be stored
on a server and analyzed by a machine learning
algorithm.

Although we are building this project with TNO
and Rijkswaterstaat, during the design and develop-
ment, we made sure that every part of the system is
easily replaceable if that is necessary. For example,
the image processing pipeline is customized for Ri-
jkswaterstaat, but it is a separate server and API so
that it can be replaced by any API that follows the
same specification if a different machine learning
model is desired. Additionally, multiple machine
learning models or image processing pipelines can
be added to the server, so the image can get checked
in many differeny ways.

2 DOMAIN ANALYSIS
In this section, we will discuss the domain in which
our product will be used. We will explore the stake-
holders and other involved parties in the use, or
possible future use of our product and explore the
current state of the art. In the end, we will em-
phasize the importance of this project, as we will
describe the limitations of the current state of the
art.

2.1 General Information
Our project can be used by anyone or any com-
pany that is interested in autonomously flying a
pre-programmed route with a drone. Additionally,
existing tasks which are currently not done by fly-
ing a drone could be replaced by a drone in the
future. In fact, in the situation we are focusing on,
that is the case. Rijkswaterstaat currently has to
send a crew of inspectors to a bridge to inspect it.
Although a drone might be used during this pro-
cess currently, taking pictures of the bridge can be
entirely automated in the future.

2.2 Involved Parties
During this project, we worked together with TNO,
which works with Rijkswaterstaat to automate the
task of inspecting vital infrastructure. TNO would
like a solution that can control the drone and
take pictures at a specific position, with a specific
camera framing. Afterwards, this image should
be automatically processed by machine learning,
so Rijkswaterstaat can automatically receive the
result of an inspection.

Our project supervisor is João Rebelo Moreira,
who is interested in the IoT (Internet of Things)
aspect of implementing such a project on a drone.
He provided us with the data structure we should
use for this project to easily interface with other
IoT applications and devices: dronetology [8], al-
though there were some limitations to this that we
will describe later in the report. João also helped
us integrate our project into Amazon AWS, a web

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 5

hosting platform frequently used by companies and
by his chair. With these requirements, the project
can easily be extended and modified in the future.

2.3 Existing Solutions
DJI already offers functionality like LMR and the
automation of taking photos at a specific point
with a specific camera angle, however, it reserves
these features for its enterprise lineup of drones.
Their DJI Pilot app includes all these functions [6]
and has powerful functionality and even an online
dashboard to manage missions and even a fleet of
drones with [3].

For consumer-level drones, DJI offers a more ba-
sic SDK (Software Development Kit) which can be
integrated with a custom Android or iOS applica-
tion [4]. With this SDK the movement of the drone
can be controlled, as well as the camera gimbal
position. It also provides an easy way to extract
the current location and state of the drone. It is not
a direct solution to our problem, however, it can
help us implement a solution.

The problem at hand is also not new. Drones
are not new, although they have been becoming
increasingly more accessible to the average con-
sumer. In 2018, a paper was published investigating
the feasibility of inspecting bridges using a drone,
where they compared drones in many different
price categories [9]. They concluded that although
there are still many limitations, not all of which
were imposed by the drone. This research, however,
used the more expensive DJI Phantom 4 drone and
concluded that cheaper consumer drones were less
usable for the purpose we are attempting to use
them for.

Because of the relative simplicity of detecting
cracks in concrete for a machine learning algo-
rithm, we chose to create a machine learning model
based on cracks in concrete. This is meant as more
of a demonstration of machine learning integration

with this product, as fully inspecting a bridge by
machine learning is out of scope for this project. It
would require us building and labeling an exten-
sive dataset of real bridges and testing it, which
could be a project on its own. Detecting cracks
in concrete has been done before. In their paper,
Zwedu Ayele, et. al propose a method of mapping
the photos onto a 3D model and determining dam-
age based on that mapping [1]. This model was
also used to more easily navigate the bridge itself
and fly around its pillars. The individual images of
various parts of the bridge are also processed and
put through a machine learning algorithm. They
concluded that this was just a proof of concept,
but that it was not necessarily a tool to replace
all bridge inspections with, although it might be
possible and make bridge inspections safer and
more efficient.

We believe that in order to make automatic in-
frastructure inspections by drone feasible, it should
be possible to do these inspections with relatively
affordable drones, as many of them are needed.
So although the technology we are developing al-
ready exists on more expensive, enterprise drones,
there is a good use for implementing it on cheaper
drones. Combining this with image processing to
make the technology feasible for deployment in
real inspections has not yet been done before.

2.4 Limitations of Existing Solutions
Concluding our investigation of the current state
of the art, although there are existing solutions on
the market, they either use more expensive, enter-
prise, or near enterprise level drones or do not yet
cover all our requirements. Additionally, although
research has been done into parts of the solution
for this problem, limitations were found. Usually,
cheaper drones like the DJI mini 2 are not even
considered for this purpose. This is because they
are consumer-oriented drones. So, although what
we are trying to achieve with this project has not

, Vol. 1, No. 1, Article . Publication date: November 2023.

6 • Author

been done on consumer-oriented drones before, re-
search into the feasibility has been done and not
all results are encouraging. Processing the images,
however, has been done before and should be fea-
sible to implement on images made by our drone.

3 DESIGN PROCESS
In this section, we will describe the process for de-
signing the different parts of the system. We will
explain the design choices and how we incorpo-
rated the feedbackwe received into the final system
design.

3.1 Preliminary Design
During the first few weeks of the project, we were
mostly working on trying to understand the ex-
act goals and requirements of the project. We had
a meeting with our supervisor and TNO during
this time. We explored the features of the drone
and analysed the domain. After a few meetings,
we understood what the research group and TNO
wanted to see in our design. We started defining
the requirements and user stories.

3.2 Initial Proposal
In week 4 we presented our initial proposal to our
supervisor and TNO. They agreed with the gen-
eral design but had a few additions to the require-
ments. They also suggested some changes to the
interaction between the backend component and
the classifier component. They requested that the
classification of an image would be visible within
the dashboard. During this meeting, we tried to
immediately think of and propose some ways that
these new requirements could be realised. We also
discussed what possible downsides of the newly
proposed solutions would be. This made it possible
for the stakeholders to make an informed decision
and together, we determined a few new require-
ments to work towards.

3.3 Incorporating Feedback
To make it possible to see the classification of an
image in the dashboard, it was necessary to make a
large change to the design concept. Our initial idea
was that the communication with the classifier
was one-way, the reason for this was flexibility.
The classifier server would only need to be able to
receive images. How and how quickly it handles
those images was completely up to the implemen-
tation.

In the new design two-way communication is
necessary, because the classifier server needs to
send back the classification to the backend server.
We decided to not have the classification be an
immediate response to the request because this
could cause issues with classifiers that are slower,
or if the client wants the classification to be done
manually. Therefore we designed the API in such
a way that the classifier can make a new POST
request containing the classification result once
the classification process is done. We decided to
store the classifications as strings so that both posi-
tive/negative and more complex classifications are
possible.

4 USER STORIES
In this section, we will investigate the different
actors and their requirements for our system.

4.1 Different Users
We split our users into three different types of users:
The inspector, the system administrator and the
client. The roles of these users will be expanded
upon in their dedicated sections. After that, the user
stories for each of these roles will be presented and
explained.

4.1.1 Inspector. The inspector is the person who
goes out into the field to record missions and de-
ploy the drone when an inspection mission needs
to be flown. He does not need access to the dash-
board but only to the mobile app. The mobile app

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 7

can execute all his tasks, such as storing a recorded
mission and loading an already stored mission.

4.1.2 System Administrator. The system adminis-
trator needs to have increased access to the system
to manage existing missions and view the inspec-
tions that were done previously. In practice, the
system administrator will most likely just be an
inspector who is higher in seniority. In the dash-
board, the administrator needs to be able to get an
overview of all existing missions and delete mis-
sions as well. Additionally, all mission executions
and photos associated with these executions need
to be visible and the administrator needs to be
able to rename individual waypoints in missions
to more clearly mark where on the inspected struc-
ture the waypoint is located. Because of the DJI
SDK not being able to properly retrieve images
from the drone programmatically, our system will
also allow the System Administrator to create a
new mission execution and add photos to it in the
dashboard.

Additionally, the system administrator should be
able to determine how the images from the inspec-
tion are processed. For this, the system adminis-
trator must be able to change the classifier that
a waypoint is classified with. This way, multiple
aspects of the image can be assessed by different
machine learning models and image processing
pipelines.

4.1.3 Client. In a real-world implementation of
our product, the client would most likely be a man-
ager at Rijkswaterstaat, who can decide whether it
is necessary to send inspectors to the bridge. Addi-
tionally, repairs could also be ordered based on the
results of the inspection.

4.2 Inspector Stories
• As an inspector, I want to record a mission, so
that I can execute it again later.

• As an inspector, I want to give newly recorded
missions a name, so that it is clear to other
users what the mission inspects.

• As an inspector, I want to execute an exist-
ing mission, so that I can collect inspection
images.

• As an inspector, I want to sort available mis-
sions by location, so that I can choose the cor-
rect mission quicker.

4.3 System Administrator Stories
• As a system administrator, I want to change
the name of a mission, so that it is clear to
other users what the mission inspects.

• As a system administrator, I want to change
the name of a waypoint, so that it is clear
which part of the object this waypoint is
meant to inspect.

• As a system administrator, I want to delete a
mission, so that the system does not become
cluttered with old missions.

• As a system administrator, I want to change
the classifier of a waypoint, so that the system
can easily change to an updated or a different
image classification component.

• As a system administrator, I want to see the
images taken on previous missions, so that I
can manually determine if the system is work-
ing correctly.

• As a system administrator, I want to see how
the images taken on a mission execution are
classified and by what classifier.

4.4 Client Stories
• As a client, I want to receive damage reports,
so that I can determine if infrastructure re-
quires repairs.

• As a client, I want to be able to easily deter-
mine where on the inspected object the dam-
age occurred.

, Vol. 1, No. 1, Article . Publication date: November 2023.

8 • Author

5 REQUIREMENT ANALYSIS
5.1 Discovery Process
The requirements for this project originated from
our stakeholders. Additionally, we also added some
requirements ourselves, such as the non-functional
performance requirements. Our main stakeholders
were our project supervisor João Rebelo Moreira,
TNO and by extension also Rijkswaterstaat.

João determined the basic requirements that
were known before the beginning of this project
together with Jurgis Šerkšnas, who investigated
the feasibility of this project in his research project
’Implementing & Integrating Live Mission Record-
ing with Starter Drones’ [13]. We built upon his
requirements and during the project, we continu-
ously presented our progress and received updated
requirements. We will list the final list of require-
ments we arrived at in this section.

Currently, TNO, a research organization in the
Netherlands has a project with Rijkswaterstaat to
automate the process of inspecting vital infrastruc-
ture such as bridges. Thus, TNO also added some
requirements to the project. These were mainly for
the dashboard and data storage part of the project,
as they are interested in adapting our project to
their systems. Although Rijkswaterstaat could pro-
vide us with some existing reports, they were not
that useful for our purpose. They did include real
inspection reports, but the image quality was often
poor, the labelling of the images would need a lot of
manual work and the dataset was not large enough
to build a proper machine learning model upon. Be-
cause we did not have contact with representatives
of Rijkswaterstaat directly, all requirements they
had were added by TNO.

5.2 Functional Requirements
(1) The system must be able to save the state of

the drone in a waypoint.

(2) A waypoint should consist of longitude, lati-
tude, altitude, yaw, gimbal pitch, and the cam-
era action.

(3) The system must be able to combine multiple
waypoints into a replayable mission.

(4) The systemmust include a dashboard showing
the existing missions.

(5) The system should provide an interface to
store and retrieve mission information.

(6) The system must be able to store captured
images.

(7) The system should provide an interface to
store and retrieve images made during mis-
sion executions.

(8) The dashboard must include functionality to
delete a mission.

(9) The dashboard must be able to display the
images captured during previous missions.

(10) The mobile app should be able to suggest mis-
sions based on the current location of the
drone and sort the missions on proximity to
the users current location.

(11) The mobile app should be able to record and
execute missions without requiring the use of
the dashboard.

(12) The classifier component should run indepen-
dently from the other components and be eas-
ily replaceable by a different model.

(13) The classification result should be stored in
the database.

5.3 Non-functional Requirements
(14) When reaching the correct location, the drone

should be able to rotate to the correct angle
within 5 seconds.

(15) The system must be able to retrieve a way-
point from the API within 1 second (after the
request has been sent to the API).

(16) The system must be able to store a waypoint
within 1 second (after the request has been
sent to the API).

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 9

(17) Themachine learning applicationmust be able
to finish classifying an image in under 10 sec-
onds.

(18) When a request is made to the online dash-
board, the response should be sent within 2
seconds.

(19) The drone should be able to save at least 50
pictures per mission execution.

(20) Individual image size should not exceed 20MB.

6 ARCHITECTURAL DESIGN
6.1 Overview
As figure 2 in the appendix shows, our system con-
sists of four main components; an Android appli-
cation that is responsible for controlling the drone,
a dashboard that allows the user to view and man-
age missions and captured data, a classification
server that can classify captured data, and a back-
end server to connect it all. These components all
interact using HTTP requests.

6.2 Android Application and Drone
Control

The Android application focuses solely on control-
ling the movements of the drone. It is built upon
the three code repositories built by Jurgis Šerkšnas
in his research project [13]. These repositories
each provided part of the code required for flying
and taking pictures with the drone autonomously.
The first repository provides autonomous flight
to a pre-programmed GPS coordinate and height
[10], and the second repository provides control
of the camera gimbal. This is done with the use
of the MissionControl timeline controller that DJI
provides with its SDK [11]. The third repository is
a demonstration of how to store the current state
of the drone in memory and includes storing the lo-
cation, height, yaw angle, and gimbal position [12].

Our Android app is based upon the same DJI UX
sample app the examples in the repositories are

based on, and the app integrates the different func-
tions to provide easy recording and playback of
waypoints. The application can record waypoints
and store a collection of waypoints as a mission in
the API. Later, this mission can be chosen from a
list of missions and reflown. When flying a mission,
the drone can also take pictures, using the gimbal
and yaw data to frame the picture as similarly as
possible each time a mission is flown. The reason
we opted to use Java and the DJI SDK for interfac-
ing with the drone is because the code that was
provided to us was already using these technolo-
gies. Apart from that, Java is a relatively simple
language, we were already familiar with it, and the
DJI SDK makes it possible for our application to
work with many of DJI’s drones, as Java is a lan-
guage commonly used to build all kinds of mobile
phone applications.

DJI provides a media manager with their SDK,
which should make it simple for us to extract the
pictures from the drone. However, we quickly dis-
covered that it does not officially support the DJI
mini 2, the specific drone model we used to develop
this application. Sometimes, the media manager
would report the correct list of files present on the
SD card of the drone, but other times, it would only
report one file that did not actually exist on the
SD card. This problem is known by DJI and the
community of developers using this SDK, as we
could find multiple reports and Github issues of
this problem specifically the DJI mini 2 [7]. In the-
ory, other DJI drones should work fine. We solved
this issue by moving this part of the upload process
to the dashboard. In a real-world application, it is
likely that a different drone model can be used and
the last part of flying a mission can be added to the
mobile app as well.

6.3 Backend System and Database
The backend of our system is highly focused on
data. It functions as the data repository for all the

, Vol. 1, No. 1, Article . Publication date: November 2023.

10 • Author

other components of our system. The backend con-
sists of an Amazon RDS database and an Amazon
EC2 instance. Amazon RDS is a service for hosting
relational databases, which can be accessed by
other AWS services or by external services. We use
MySQL as our database engine because it is slightly
less complex than database systems such as Oracle
Database, while still offering enough features for
our design. We favoured the combination of EC2
and RDS over AWS Amplify because the Amplify
API system relies on GraphQL, which we were not
yet familiar with prior to this project. We opted
for a more traditional relational database approach
using MySQL.

An EC2 instance is a compute instance capable
of running various operating systems, which in
our case runs Amazon Linux 2023. The instance
functions as the bridge between the database and
the other components of the system. On the EC2
instance is an HTTP web server that exposes API
endpoints to the web. The web server is built using
Apache Server and PHP. The reason we chose PHP
is because it is lightweight and the initial setup
is very quick. We did not use a PHP framework
such as Laravel because we are not familiar with
it and gaining familiarity would take too much
time for relatively small benefits. Our API only
has a few endpoints and is just a simple bridge
between clients and the database, providing saniti-
zation and authorization. The API offers complete
read access through GET requests. To ensure data
integrity the API limits the ability to directly mod-
ify data. Instead, the POST, PUT, and DELETE
requests are handled by performing checks and
actions that protect the database. For example,
the /missionExecution POST endpoint creates a
new mission execution in the database and then
creates the corresponding waypoint executions au-
tomatically. This design protects the data integrity
by checking for undesired database states. It also
makes it easier to debug errors by centralizing all
the logic around data integrity in one place and be-
ing able to provide more informative status codes

to the various clients.

The system uses the HTTP basic authentication
header to authenticate a client. The credentials
are in a configuration file on the server. For the
connection between the RDS database and the EC2
instance, we use a feature in AWS, that automati-
cally sets up the database and the instance so that
the database only accepts connections from the
EC2 instance. Using available enterprise solutions
for critical components such as security is always
a good choice when possible.

For compatibility reasons surrounding SSL cer-
tificates - which are necessary for secure traffic -
we decided to use a proxy server. In our testing en-
vironment, we use a domain and hosting platform
that Justin already had access to, because it was
already available and simple to setup. Although
we set up a self-signed certificate solution, in pro-
duction, it is not a good idea to use a self signed
certificate for securing internal connections. This
is because the chain of trust is only limited to the
certificate authority that we also control and is not
as hardened as commercially available solutions
like Let’s Encrypt, or cloudflare. Currently, there is
a self-signed SSL certificate on the web server, with
a Let’s Encrypt certificate to secure the outgoing
connection from the proxy. In a production envi-
ronment, it would be better to host the proxy on
the same server as the API, as in that way, no un-
encrypted internet traffic leaves the EC2 instance.

The full documentation of the API
is available at droneinc.stoplight.io/docs/
dronelivemissionrecording.

6.4 Dashboard Web Application
To view current missions and edit their details,
a dashboard was created. On the dashboard, the
user can see a list of all the existing missions, and
when a mission is clicked all waypoints of the
mission and the previous executions of the mission

, Vol. 1, No. 1, Article . Publication date: November 2023.

droneinc.stoplight.io/docs/dronelivemissionrecording
droneinc.stoplight.io/docs/dronelivemissionrecording

Design Project Report • 11

are shown. The waypoints are shown as clickable
markers on a map, from here their name can and
the classification model used to classify the image
taken at this waypoint can be viewed. In a table,
the details about the previous executions of the
mission can be seen. From here, the user can view
the pictures taken in a mission execution, delete
a specific mission execution or create a new mis-
sion execution and upload its pictures. When the
pictures are viewed, the dashboard also shows the
user what model was used to classify each picture
and how each picture was classified. Furthermore,
entire missions can be deleted from the dashboard.

The dashboard is created as a React application,
a JavaScript-based UI development library. We
chose React since it is one of the easier libraries
to use to create fast, efficient, and scalable web
applications, and we already had some experience
with it. This way we were able to create our own
react components and combine these into the dash-
board using CSS. The dashboard retrieves the data
from the database by making several API calls. The
dashboard sends GET requests to get information
on all the existing missions and their details, as
well as to retrieve the pictures from the database.
New mission executions are sent to the database
via POST requests, and the images are added to
these executions via PUT requests. The removal
of missions and mission executions is done using
DELETE requests.

6.5 Image Recognition Server
To further automate the inspection of infrastruc-
ture, a machine learning model has been trained
to detect damage in concrete. This model is then
hosted on a web server that receives images and
mission-specific identifiers and returns the pre-
dicted class of the image. The code for creating the
model is written in Python 3.11. This is because of
experience with the language, and because it has
libraries for analyzing data and creating machine

learning models. Python is a popular programming
language for building Machine Leearning applica-
tions and has excellent documentation on how to
create such applicatioins. The data used to train
and test the model was reused from a different
study [1]. Before feeding images into a compu-
tational model, they must first be simplified to
reduce the computation required to process them.
The first step is to resize the images to 80 by 80
pixels. Next is to grayscale the image. This means
replacing the colors of an RGB image with differing
shades of grey. Since the damage we are looking
for does not rely on color this is a fitting way to
decrease the complexity of an image. To do this
scikit-image’s rgb2gray function is used.

Afterwards, the image is transformed into a set of
Histograms of Oriented Gradients (HOG) [2]. Local
object appearance and shape in a picture can be
characterized by the distribution of local intensity
gradients or edge directions. This is done by first
dividing the image into smaller regions or cells.
Then for each cell, a one-dimensional histogram of
gradient directions or edge orientations is created
over the pixels of the cell. To enhance invariance to
illumination, shadow, and edge contrast, contrast
normalisation is performed. This entails grouping
multiple cells into blocks and accumulating local
histogram values. Cells typically appear in multiple
blocks but the normalisations are block-dependent
and thus different. This results in cells appear-
ing multiple times in the final output vector with
different normalisations. The normalized block de-
scriptors are called HOG descriptors. These HOG
descriptors are then collected from all blocks into
a combined feature vector that can be used in a
supervised learning model. To facilitate this pro-
cess scikit-image’s hog function is applied. For the
transformation in this model, cells have a size of 14
by 14 pixels with a block having a size of 2 by 2 cells.

The final feature factor we receive after the trans-
formation has a high cardinality. For this reason,
we have opted to use a support vector machine

, Vol. 1, No. 1, Article . Publication date: November 2023.

12 • Author

(SVM). An SVM is a supervised learning method
provided by sci-kit learn which can be used to clas-
sify inputs. It is versatile and effective in handling
high-dimensional spaces such as our feature vector.
It is even effective when the number of features
is greater than the number of samples, however,
this can lead to over-fitting. Another downside is
the SVM being unable to provide a direct proba-
bility estimate, but this can still be attained with a
computationally expensive 5-fold cross-validation.
To decrease the amount of computation required
in training the SVM uses Stochastic Gradient De-
scent (SGD) learning. Here the model updates its
internal parameters after each processed sample
with a decreasing learning rate. The model is sup-
plied with a dataset of 20,000 JPEG images, where
exactly half shows cracked concrete and the other
half shows non-cracked concrete. This dataset is
split into an 80/20 distribution of training and test
data respectively. To increase the model’s accu-
racy hyper-parameter tuning is performed. This
involves trying a variety of different values for the
model’s hyper-parameters and taking the values
that yield the highest accuracy score. The model is
now ready to be used. It is saved as a .pkl file to be
loaded and deployed on the server.

To create the web application and process classi-
fication requests the Python library flask is used.
This allows HTTP requests to be routed to the cor-
rect functions. The web app is protected with basic
authentication, just like the API. On startup, the
web app loads the locally stored model. It is then
able to receive classification requests in the form
of a POST request containing a base64 encoded
image and identifiers. The result of the classifica-
tion along with the identifiers is then sent to the
database in the form of a PUT request. To allow
the web app to communicate with the web server
it is hosted on, Gunicorn is used as a Web Server
Gateway Interface (WSGI). The HTTP server ca-
pabilities are provided by NGINX, which acts as
a reverse proxy. All these processes are run on
Ubuntu 22.04, which is hosted on an Amazon AWS

EC2 instance.

6.6 Flexibility
Our system is designed with flexibility in mind.
This can mainly be seen in the connection between
the API web server and the machine learning
server. Our API can handle multiple different ma-
chine learning algorithms and a different machine
learning algorithm can be chosen for each mission.
It is even possible to choose a different machine
learning model for each waypoint in a mission. For
example, one mission could check both concrete
degradation and corrosion on metal parts using
two different classifiers. If the machine learning
algorithm follows the API specification, it should
be possible to seamlessly swap between machine
learning servers. The system is so flexible, that
the classification could even be done manually
because there are no timing constraints. In our
project, we developed a basic implementation of a
machine learning algorithm that can detect cracks
in concrete as a proof of concept.

In a real deployment by Rijkswaterstaat, it would
likely be necessary to run the images through mul-
tiple different image processing pipelines and ma-
chine learning algorithms. This, however, was not
feasible to implement in our project in the time al-
located to it. Additionally, TNO could not provide
us with any usable dataset for achieving this goal,
so a dataset to train these algorithms on would
most likely also need to be built. This task is left
up to future research, or TNO and Rijkswaterstaat,
if this project were to be tested in a real inspection
scenario.

7 USER INTERFACE OVERVIEW
7.1 Features
The features in the dashboard are created so a sys-
tem administrator can view and edit the existing
missions. On the left side of the dashboard, a list
can be seen containing all the current missions.

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 13

The missions are displayed in simple blocks listing
their mission id, the name of the mission and in-
formation on the number of waypoints and photo
waypoints to make a better distinction between dif-
ferent missions. The mission blocks can be clicked
to display more detailed information on the right
side of the dashboard. Here, an overview of the
waypoints in the mission is given in the form of
a map with markers. Also, on the bottom of the
screen, a table is shown with information on the
previous executions of this mission. Here, the date
of the executions is shown, as well as an option
to view the pictures taken during the execution as
well as an option to delete the execution. When
viewing the pictures, the dashboard also shows
how the picture is classified and what classification
model was used. On the top of the screen, a new
mission execution can be created and the mission
itself can be deleted.

In the mobile app, we kept the features basic by
design. As the app is used in the field, it is not nec-
essary to have advanced functionality like view-
ing previous mission executions. During flight, the
user can create a mission by recording waypoints
of the drones current position and state. The drone
will only remember the waypoints themselves and
not how the user flew to it, to make it possible to
fly the optimal path between waypoints. The user
can send a collection of waypoints to the API after
giving the mission a name or reset the currently
saved waypoints. When an inspection needs to be
done, the user can select from a list of waypoints re-
trieved from the API, sorted by the proximity of the
first waypoint to the user. The app loads the way-
points in the mission into its memory, from where
the user can start a mission execution. Because of
the limitations in the DJI SDK described previously,
the app does not start a mission execution and up-
load the images taken during the execution. This
needs to be done manually, in the dashboard after
flying the mission.

7.2 Usability
The design of the dashboard is kept very basic for
this project. After discussing with our supervisor,
João, we concluded that we wanted the dashboard
to be a proof of concept that shows the intended
functionality without an elaborate user interface,
so we would not spend too much time on this.
In Figure 9 in the Appendix, the main page of the
dashboard can be seen. On the left, the missions list
is shown that sorts the missions by their mission
ID. The mission details section on the right side
will simply display placeholder data until a mission
is clicked from the mission list. When viewing the
pictures taken in a specific mission execution, the
dashboard shows them like is shown in Figure 10.

The features the app supports are basic by design,
as explained in the previous section. Different func-
tionality is put under different buttons that pop up
individual menus for managing waypoints, or mis-
sions. If something goes wrong, the user can press
the emergency stop button and the drone will stay
where it is and stop flying and freeze on the spot it
was flying through when the emergency stop but-
ton was pressed. In Figure 7 the main screen of the
drone can be found. Under missions and load a mis-
sion from the API, the user can load a mission from
the API to fly it from memory. This screen sorts the
missions by proximity to the current location of the
drone and can be seen in Figure 8. The proximity to
a mission is determined by the first waypoint in the
mission and the app limits users by only allowing
the drone to fly to waypoints within a 500 meter
radius from the drone’s current position. This pre-
vents the user from accidentally flying the wrong
mission and reduces the chance that the drone will
crash into something. For the best experience, the
user should deploy the drone at the exact same lo-
cation every time, or know where the drone will
fly so the drone does not accidentally crash into
something.

, Vol. 1, No. 1, Article . Publication date: November 2023.

14 • Author

7.3 Considerations in Further Design
Asmentioned in section 7.2, we did not spendmuch
time working on the user interface and making
the dashboard aesthetically pleasing. We suspect
that if this product were deployed by a client, they
would want to create their own dashboard for eas-
ier integration with their systems, or integrate the
dashboard fully in existing systems. In this case,
they might take the functionality of our dashboard
as a starting point, but they could definitely im-
prove on the user interface and general looks and
feel of the dashboard. Furthermore, the dashboard
might be improved upon by adding more function-
ality to edit the missions. For example, a system
administrator might want to edit the location of
waypoints to fine-tune a mission, or delete certain
waypoints in a mission that might no longer be
possible to reach.

As for the mobile app, because our product is
more of a proof of concept and we were adapting
an app with a codebase that we were not famil-
iar with, the final product is not very aesthetically
pleasing. This is not such a big issue for deploy-
ing it with a company, as the UI is intuitive and
all the functionality is implemented. However, in
future work, it might be possible to improve the UI
and interact with the camera feed of the drone as
well to show the waypoints visually, through the
camera of the drone. Additionally, there is already
a basic implementation of a map in the example
DJI provides, which can be expanded upon to show
where the waypoints are on the map. We did not
do that however, as such functionality is already
implemented in the dashboard. Streamlining the
process of flying a mission so it takes place entirely
in the app (including creating a mission execution
in the API and uploading the photos of the mission
execution to the API) would also make the process
less error-prone.

8 TESTING AND VALIDATION
8.1 Testing Approach
Our testing approach mostly revolves around man-
ual testing and integration testing. The individual
components of our system are relatively small and
are all structured in different ways using different
languages. This makes it difficult to create a struc-
tured testing approach. Testing the drone can only
be done manually. Luckily, the small scope of the
individual components makes manual testing feasi-
ble. After each change, we tested the affected end-
points. After large structural changes, we retested
the whole API.

8.2 Integration Testing
In the last two weeks of development (weeks 7
and 8), we focused on integrating all the different
components of our system. Integrating the drone
with the backend component was done at an ear-
lier stage. At each stage of integration, we tested
if everything worked as expected. We started by
integrating the machine learning component with
the backend, then tested it by manually upload-
ing images to the backend component to see if it
would correctly do the two-way communication
with the classifier. Next, we checked if data up-
loaded using the dashboard would also correctly
go through each stage and store a classification
in the database. Then we also confirmed that the
classification could be retrieved by the dashboard.

8.3 Requirement Validation
The functional requirements can be easily tested by
using the functions of the system while inspecting
the behavior of the backend at the same time. This
way we could ensure that all the data that is sent to
the backend is stored in the way we would expect.
The non-functional requirements are evaluated
by looking at the achieved performance of our
system. Validating these requirements was done at
the same time as integration testing. We measured
performance in multiple situations by creating test

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 15

missions that focused on specific characteristics,
such as turning speed or long-distance flight preci-
sion. After testing these situations we can conclude
that our system adheres to the non-functional re-
quirements.

We specifically tested the following situations:
• We created a mission where a waypoint is far
away from the previous. Using this we can
test if the drone correctly maintains its alti-
tude while flying.

• We created a mission where the drone has to
make a sharp turn. Using this we can test how
quickly the drone turns.

• We created a mission where the drone rapidly
drops in altitude, to see if it does not drop
lower than the target altitude, or if it would
correct itself.

8.4 Machine learning model analysis
To determine howwell the machine learning model
performs we have performed an analysis of its pre-
dictions. As mentioned in section 6.5, the 20.000
images made available to the model are split into
an 80/20 distribution. This leaves 4.000 images for
testing. The model then labels these images ’Posi’ if
it predicts an image to be of cracked concrete, and
’Nega’ if it predicts the image to be of undamaged
concrete. These predictions are then compared to
the actual labels of these images. We have gathered
the results of this in the confusion matrix seen in
figure 11. What is interesting to note is that the
model seems to perform quite well with the test
data, scoring 98.1% accuracy in its predictions. To
determine if the model can adapt to new, unseen
data a 5-fold cross-validation is performed. Here
we split the data into 5 folds of different 80/20 dis-
tributed training and test sets and examine how
the model performs on each fold. We measure its
performance based on the following metrics:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦,𝑦) = 1
𝑛

𝑛−1∑︁
𝑖=0

1(𝑦𝑖 = 𝑦𝑖) (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦,𝑦) = |𝑦 ∩ 𝑦 |
𝑦

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑦,𝑦) = |𝑦 ∩ 𝑦 |
𝑦

(3)

𝐹1(𝑦,𝑦) = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦,𝑦) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑦,𝑦)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦,𝑦) + 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑦,𝑦) (4)

Here n is the number of samples,𝑦 are the predicted
values, and𝑦 are the corresponding true values. 1(x)
is the indicator function. For each fold, we take the
scores of the metrics and calculate the mean result.
A graph showing the mean scores of all folds can
be seen in figure 12. What stands out about this
graph is that all scores are around 0.975. This can
be explained when looking at the confusion ma-
trix in figure 11. This shows that the number of
false positives and false negatives is very low and
around the same number. When this is the case for
every fold in the 5-fold cross-validation, this results
in very similar mean scores. This shows that the
model can generalize when faced with unknown
data, and is therefore not overfitted or underfitted.
While the model is not overfitted or underfitted,
it is important to analyze if the amount of train-
ing data is optimal. To this end, we have created a
learning curve as seen in figure 13. This involves
training the model with increasingly bigger subsets
of our actual training data, and examining how its
accuracy changes. What we see is that while the
model benefits from a large dataset, the actual in-
crease in accuracy is limited. A training set with
over 12.000 images only performs around 2% bet-
ter than a dataset with less than 2.000 images. An
explanation for this could be the way the model
learns when presented with increasing amounts of
data. As mentioned in section 6.5, SDG learning is
used which causes the model to learn at a slower
rate when given more data. Other learning algo-
rithms could lead to different results and should be
examined in further research.

, Vol. 1, No. 1, Article . Publication date: November 2023.

16 • Author

9 REFLECTION
9.1 Planning
At the beginning of the project, we made a plan
to ensure that we would finish every feature in
time. We also determined dependencies between
features and different parts of the system, so we
would be able to actually follow the planning. Our
initial Gantt chart can be found in Figure 1.

This Gantt chart is based on the requirements
we had at the time of creating it. We expected that,
through our collaboration with TNO, additional
requirements would be added. We also expected
issues with integrating the autonomous flight code
that was provided to us, which is why some of the
implementation tasks are planned to take longer
than may be expected.

In the end, we needed the extra time in this Gantt
chart, because during the integration of the three
repositories provided to us, we had a lot of issues,
ranging from bugs in the DJI SDK itself, as well
as concurrency issues. Because of the uncertainty
in our collaboration with TNO, we opted not to
create a new Gantt chart after this. We made a plan
each week, after our weekly progress meeting with
our supervisor, based on the feedback discussed in
these sessions. This worked well for us.

9.2 Cooperation
In the initial phases of the project we made some
agreements on howwewould cooperate during the
development of this project. One thing we deemed
important was frequent in-person work sessions,
as this would keep members up-to-date on pro-
ceedings and foster collaboration. Another agree-
ment was an equal distribution of the workload.
We did not think it necessary to formalize these
agreements in a written contract as we hold our-
selves to be responsible enough to uphold them.
We would say that agreements were properly fol-
lowed by all members of the team throughout the

duration of this project and that any deviations
from them were reasonable and/or discussed be-
forehand. The Red/Green card procedure was not
relevant to our project, as we feel every member
of the group contributed evenly to its progress.

9.3 Stakeholder Interactions
During the development of the project, we tried
to have frequent contact with the primary stake-
holders. For this, we planned a meeting every Fri-
day to discuss our project with the stakeholders.
Beyond these meetings, the main methods of com-
munication were via Microsoft Teams and e-mail.
Throughout the development of the project our
supervisor, dr. João L.R. Moreira, proved to be a
motivated source of feedback. Though initially, his
attention had to be divided because of personal
circumstances, he was readily available to answer
any questions we had. The contact with our other
primary stakeholder, TNO, was a bit unclear at the
start. Our initial expectation was that TNO would
be able to offer us datasets to train our machine
learning model on, but this was not the case. They
instead acted more as a client, in that role they
offered valuable feedback on our design and had
critical questions about how it would function in
practice. We are not sure where the initial misun-
derstanding came from, but in the end, their profes-
sional knowledge of the subject of infrastructure
inspection was very helpful during our project.

9.4 Issues
During the design and development of this project,
we had many issues, from issues with the DJI SDK
and the drone to the weather and the technology
provided to us. In this section, we will describe
these issues and the solutions we found for them,
if any.

Starting with the drone and the DJI SDK: DJI has
released a new SDK version, version 5.0 and the
documentation and questions we found online did

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 17

not necessarily specify for which of the SDK ver-
sions they were. We are using 4.16.2 in our project,
which is one of the newest versions of SDK version
4. The reason we cannot switch to SDK version 5
yet, is that the DJI mini 2 (the only drone available
to us for this project) is not supported by that ver-
sion anymore [5]. Additionally, the MediaManager
component of SDK version 4 does officially not
support the drone we are using for development
[7]. This will also not be fixed and might be the
result of DJI giving a lower priority because of the
lower price of the drone, although we cannot say
this for sure.

Flying the drone relies on a nice open space be-
ing available. During development, we could not
always ensure that the drone would do exactly
what we thought we programmed it to do. We
used the UTrack for testing, as there was a nice
open space available in which we could safely test
our code. However, as the drone is not waterproof,
we also needed to plan around weather forecasts.
Because of GPS reception, it was impossible for
us to test the drone inside a large indoor space
during days with bad weather, so some days we
could just not make any progress on testing the
Android application.

Amazon AWS also posed some issues for us. Us-
ing AWS as infrastructure to deploy and host the
systems of our project was a requirement, however,
we were not familiar with AWS before this project.
Thus, we opted to just use the basics of AWS (an
EC2 instance, which is just like a standard Linux
server) and an RDS instance to create and host the
database. For the dashboard, we used an Amplify
instance. We had some small starting problems like
the EC2 instance not having a static IP address and
a bug in Visual Studio code that caused the instance
to hang every time we tried to update something
on it.

10 CONCLUSION
10.1 Thoughts on DJI SDK
Currently, there are two different versions of the
DJI SDK: version 4 and version 5. Version 4 sup-
ports older drones and receives less updates than
the newer version 5. In our project, we used the
DJI mini 2 drone, which was only supported by
SDK version 4. For future projects, we would rec-
ommend that if the drone supports it, SDK version
5 is used.

Although we managed to work our way around
the SDK, on forums on the internet, it is not always
clear which version of the SDK the conversation
is about. This makes it often difficult to effectively
find a solution to a problem. Additionally, the SDK
would log a lot of messages in the console, as well
as warnings or errors. Although these did not seem
to impact the working of our app too much, this
is an example of a larger issue. This issue is that
the inner workings of the SDK were not always
clear to us and it was often difficult to diagnose
where issues were coming from. With regard to
concurrency, we had more issues. Some functions
and structures did not seem to have a proper call-
back structure, or callbacks that were not suited
for detecting when they were finished. We had to
build around these limitations, sometimes making
assumptions about the time an action would take,
which is clearly not the desired solution.

Apart from these issues, the DJI SDK makes it
trivial to implement a solution that will support
many different models of DJI drones. If many dif-
ferent models of drones need to be supported, the
DJI SDK seems to be the way to go. Because we
did not have access to a drone that is supported by
DJI SDK version 5, we could not test that version
of the SDK specifically and it might have solved
some of the issues we encountered with version 4.

, Vol. 1, No. 1, Article . Publication date: November 2023.

18 • Author

10.2 Feasibility of Consumer Drones
This project has shown that although there might
be some limitations, using consumer drones for
automating flight is definitely feasible on a small
scale. The code we developed is currently stable
and we can safely fly it in a crowded area where
GPS reception is good. This might however not be
the case for bridges, as a mass of concrete or metal
might interfere with the GPS signal. For bridges, it
might be possible to install specific hardware on
the bridge which the drone can recognize and use
to accurately determine its location in relation to
the bridge.

Higher-end drones like the DJI mini 4 pro, have,
as previously described, more of the features re-
quired to carry out automated inspections of
bridges, like built-in waypoint support, which can
be interacted with with the SDK as well. Addition-
ally, these more expensive drones also have object
detection in a 360-degree radius around them, pre-
venting a fly-in with a bridge if the GPS signal does
get lost. It might thus be worth it to use a slightly
more expensive drone.

10.3 Documentation
Wedocumented our code and system in a few differ-
ent ways. Our entire system is mapped by a full ar-
chitecture overview and the API is documented by
an openAPI documentation. This documentation
maps out every endpoints, arguments and gives
examples on how to use every endpoint. Addition-
ally, we were requested to implement dronetology
[8]. This ontology is clearly in its early phase of de-
velopment and although it is very extensive, expla-
nations for many terms and properties are lacking.
Additionally, dronetology seems to be more use-
ful for documenting an entire system, from drone
to data storage, whereas we just need to format
our API according to dronetology. We chose to try
to name our properties according to how drone-
tology prescribes it, but we could not implement

dronetology fully, as its documentation was lack-
ing. Improving this could be a project for future
work.

10.4 Recommendations
The DJI mini 2 is a great starter drone. In drone
terms, it is not very expensive, it has a camera that
is good enough for taking nice pictures from above
and can even fly decently fast. However, we also
had a few issues with it, which are described in the
issues section. Its relatively cheap price might also
incur some of these issues, although we cannot say
that for sure. Although we tested and developed
with the DJI mini 2, the great thing about the DJI
SDK is that our code will work with more drones
than just the DJI mini 2. In this section, we will
make a recommendation for a drone to be used if
this project were to be continued with a different
drone.

First, it is important to consider the DJI SDK
version the drone is supported by. Although ac-
tive development on version 4 seems to have just
ended, no new drones are receiving support for
this version and thus, to ensure the drone keeps
receiving SDK support, it would be wise to choose
a drone that is supported by SDK version 5. We
have personally tested the DJI mini 4 Pro. The main
benefit of this drone is the controller. It connects
with the DJI RC controller version 2, which runs
Android as its operating system. Although it might
not be trivial and we could not test it with this
particular drone, it might be possible to deploy
an app directly to this controller and cut out the
requirement for having a connection to the con-
troller.

A disadvantage of choosing the DJI mini 4 pro is
its price. Although with its price under €1000.00, it
can still be considered a starter drone, it is twice
as expensive as the DJI mini 2. However, with the
DJI mini 2, a phone would need to be purchased as
well and integrating everything onto the controller

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 19

directly might also lead to a more stable and user-
friendly system. Additionally, the DJI mini 4 pro
also supports waypoint flight out of the box, which
can also be accessed by the SDK. This would make
for a more seamless integration process.

11 FUTURE WORK
11.1 Android Device Emulation
One limitation of using the DJI SDK is that it re-
quires the controller to be connected to an Android
device. That means that one device can only con-
trol one drone and that there is no USB port avail-
able for debugging information and charging. For
real-world applications, it would be beneficial to
have a system that is capable of emulating multi-
ple Android devices and has a central information
log to keep track of the multiple drones. As noted
in the recommendations, newer DJI drones have
controllers that run Android and don’t require an
additional device. It may be possible to reverse-
engineer those new controllers to help build a sys-
tem that can directly control newer drone models.
Even without the need for Android emulation.

11.2 Improvement of Image
Classification Models

A limitation of the current image classification
model is that it is not trained using images made by
the DJI mini 2 or similar drones. This means that
while it does perform well on the training data,
it is unsatisfactory when dealing with actual pic-
tures. Though it was unfeasible in the limited time
we had for the project, in further development it
would be good to create a dataset solely for this
project. Further improvements to the image classi-
fication model could come in the form of creating
multiple models for different kinds of infrastruc-
ture damage. As it stands the model is only suited
for detecting cracks in concrete, but damage to in-
frastructure could take a variety of forms. Further
research should be done into what kinds of visi-
ble damage can occur in infrastructure and make
separate models for each.

, Vol. 1, No. 1, Article . Publication date: November 2023.

20 • Author

REFERENCES
[1] Yonas Zewdu Ayele, Mostafa Aliyari, David Griffths, and Enrique Lopez Droguett. 2020. Automatic crack segmentation for

uav-assisted bridge inspection. Energies 13, 23 (12 2020). https://doi.org/10.3390/EN13236250
[2] N Dalal and B Triggs. 2005. Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1. 886–893. https://doi.org/10.1109/CVPR.2005.177
[3] DJI. [n. d.]. DJI FlightHub 2 - Drone Software and Management Platform - DJI Enterprise. https://enterprise.dji.com/

flighthub-2
[4] DJI. 2022. GitHub - dji-sdk/Mobile-SDK-Android: DJI Mobile SDK for Android: http://developer.dji.com/mobile-sdk/.

https://github.com/dji-sdk/Mobile-SDK-Android
[5] DJI-SDK. 2023. dji-sdk/Mobile-SDK-Android-V5: MSDK V5 Sample. https://github.com/dji-sdk/Mobile-SDK-Android-V5
[6] DJI Ennterprise. 2020. Smart Inspection (Waypoint 2.0, Live Mission Recording, AI Spot-Check), Matrice 300RTK & H20

Series. https://www.youtube.com/watch?v=XYoBx1As6Sg
[7] gianlu33. 2022. Mini 2: cannot retrieve media list with ‘getSDCardFileListSnapshot‘ · Issue #1188 · dji-sdk/Mobile-SDK-

Android. https://github.com/dji-sdk/Mobile-SDK-Android/issues/1188
[8] David Martín-Lammerding, Alberto Córdoba, Jesús Villadangos, and José Javier Astrain. [n. d.]. Dronetology. https:

//dronetology.net/dronetology/index-en.html
[9] Junwon Seo, Luis Duque, and JimWacker. 2018. Drone-enabled bridge inspection methodology and application. Automation

in Construction 94 (10 2018), 112–126. https://doi.org/10.1016/J.AUTCON.2018.06.006
[10] Jurgis Šerkšnas. 2023. GitHub - LarvaZZa/LMR-Autonomous-R1. https://github.com/LarvaZZa/LMR-Autonomous-R1
[11] Jurgis Šerkšnas. 2023. GitHub - LarvaZZa/LMR-Inspection-R2. https://github.com/LarvaZZa/LMR-Inspection-R2
[12] Jurgis Šerkšnas. 2023. GitHub - LarvaZZa/LMR-State-R3. https://github.com/LarvaZZa/LMR-State-R3
[13] Jurgis Šerkšnas. 2023. Implementing & Integrating Live Mission Recording with Starter Drones. Ph. D. Dissertation. University

of Twente, Enschede.
[14] Statistica. 2022. Drones - Worldwide | Statista Market Forecast. https://www.statista.com/outlook/cmo/consumer-

electronics/drones/worldwide

, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.3390/EN13236250
https://doi.org/10.1109/CVPR.2005.177
https://enterprise.dji.com/flighthub-2
https://enterprise.dji.com/flighthub-2
https://github.com/dji-sdk/Mobile-SDK-Android
https://github.com/dji-sdk/Mobile-SDK-Android-V5
https://www.youtube.com/watch?v=XYoBx1As6Sg
https://github.com/dji-sdk/Mobile-SDK-Android/issues/1188
https://dronetology.net/dronetology/index-en.html
https://dronetology.net/dronetology/index-en.html
https://doi.org/10.1016/J.AUTCON.2018.06.006
https://github.com/LarvaZZa/LMR-Autonomous-R1
https://github.com/LarvaZZa/LMR-Inspection-R2
https://github.com/LarvaZZa/LMR-State-R3
https://www.statista.com/outlook/cmo/consumer-electronics/drones/worldwide
https://www.statista.com/outlook/cmo/consumer-electronics/drones/worldwide

Design Project Report • 21

A GANTT CHART

Fig. 1. The Gantt chart we made at the beginning of the project to streamline the first few weeks of the project

, Vol. 1, No. 1, Article . Publication date: November 2023.

22 • Author

B DIAGRAMS
B.1 Architecture Overview

Fig. 2. Overview of the components of the architecture and the communication between them

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 23

B.2 Database diagram

Fig. 3. The database structure

, Vol. 1, No. 1, Article . Publication date: November 2023.

24 • Author

B.3 Activity diagrams

Fig. 4. Activity diagram for recording a new mission

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 25

Fig. 5. Activity diagram for loading an existing mission

, Vol. 1, No. 1, Article . Publication date: November 2023.

26 • Author

B.4 Use case diagram

Fig. 6. Use case diagram

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 27

C MOBILE APPLICATION

Fig. 7. The main screen of the app. The user can see a stream from the drone’s camera and use the buttons to
interact with missions and waypoints.

Fig. 8. This popup shows a list of missions retrieved from the API, sorted by proximity to the drone.

, Vol. 1, No. 1, Article . Publication date: November 2023.

28 • Author

D DASHBOARD

Fig. 9. Main page of the dashboard

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 29

Fig. 10. Dashboard view that shows the pictures taken in a mission execution

, Vol. 1, No. 1, Article . Publication date: November 2023.

30 • Author

E MACHINE LEARNING

Fig. 11. Confusion matrix of predictions

Fig. 12. Scores of classification model on test data with a 5-fold cross-validation

, Vol. 1, No. 1, Article . Publication date: November 2023.

Design Project Report • 31

Fig. 13. Learning curve of the machine learning model

, Vol. 1, No. 1, Article . Publication date: November 2023.

	Abstract
	Contents
	1 Introduction
	2 Domain Analysis
	2.1 General Information
	2.2 Involved Parties
	2.3 Existing Solutions
	2.4 Limitations of Existing Solutions

	3 Design Process
	3.1 Preliminary Design
	3.2 Initial Proposal
	3.3 Incorporating Feedback

	4 User Stories
	4.1 Different Users
	4.2 Inspector Stories
	4.3 System Administrator Stories
	4.4 Client Stories

	5 Requirement Analysis
	5.1 Discovery Process
	5.2 Functional Requirements
	5.3 Non-functional Requirements

	6 Architectural Design
	6.1 Overview
	6.2 Android Application and Drone Control
	6.3 Backend System and Database
	6.4 Dashboard Web Application
	6.5 Image Recognition Server
	6.6 Flexibility

	7 User Interface Overview
	7.1 Features
	7.2 Usability
	7.3 Considerations in Further Design

	8 Testing and Validation
	8.1 Testing Approach
	8.2 Integration Testing
	8.3 Requirement Validation
	8.4 Machine learning model analysis

	9 Reflection
	9.1 Planning
	9.2 Cooperation
	9.3 Stakeholder Interactions
	9.4 Issues

	10 Conclusion
	10.1 Thoughts on DJI SDK
	10.2 Feasibility of Consumer Drones
	10.3 Documentation
	10.4 Recommendations

	11 Future Work
	11.1 Android Device Emulation
	11.2 Improvement of Image Classification Models

	References
	A Gantt chart
	B Diagrams
	B.1 Architecture Overview
	B.2 Database diagram
	B.3 Activity diagrams
	B.4 Use case diagram

	C Mobile application
	D Dashboard
	E Machine learning

